Método híbrido para avaliação dos custos operacionais de distribuidoras brasileiras de energia

Autores

DOI:

https://doi.org/10.14488/1676-1901.v25i2.5221

Palavras-chave:

Distribuição de Energia Elétrica, Custos Operacionais Eficientes, Benchmarking, Análise Envoltória de Dados (DEA), Análise de Fronteira Estocástica (SFA)

Resumo

Este estudo propõe um modelo de avaliação de benchmarking voltado ao sistema regulatório brasileiro para determinar os custos operacionais eficientes das concessionárias de distribuição de energia elétrica. O modelo visa fornecer aos agentes reguladores um parâmetro robusto para o controle periódico de tarifas e para o monitoramento dos padrões de qualidade no fornecimento de energia, com base em uma avaliação precisa da eficiência operacional dessas concessionárias. A pesquisa adota um modelo híbrido de benchmarking que integra a Análise Envoltória de Dados (DEA) e a Análise de Fronteira Estocástica (SFA) em uma metodologia de avaliação de eficiência estruturada em Três Estágios. Essa abordagem ajusta os custos operacionais ao nivelar as condições de atuação de cada concessionária antes de reaplicar a análise DEA, resultando em uma avaliação mais consistente com as particularidades do mercado brasileiro. Como resultado, o desempenho das concessionárias é avaliado exclusivamente em termos de eficiência gerencial, com controle dos efeitos do ambiente operacional e do ruído estatístico. Esse método rigoroso incorpora tanto variáveis gerenciáveis quanto não gerenciáveis no cálculo da eficiência, oferecendo uma medida confiável e abrangente.

Downloads

Não há dados estatísticos.

Biografia do Autor

Luís Filipe Azevedo Oliveira, Centro Universitário Ibmec (IBEMEC), Rio de Janeiro, RJ, Brasil.

Possui graduação e mestrado em Engenharia de Produção pela UFRN. Atualmente é professor assistente do Centro Universitário Ibmec e aluno do Programa de Pós-Graduação em Engenharia de Produção da PUC-Rio. Atua na área de Pesquisa Operacional, com foco em avaliação de eficiência e benchmarking. Mestre em Engenharia de Produção, UFRN.

Referências

ABRADEE. Relatório SIG: continuidade do fornecimento (DEC/FEC). Associação Brasileira dos Distribuidores de Energia Elétrica, Brasil, 2013.

AIGNER, D.; LOVELL, C. A. K.; SCHMIDT, P. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, v. 6, n. 1, p. 21-37, 1977. Disponível em: https://www.sciencedirect.com/science/article/pii/0304407677900525 . Acesso em: 10 jan. 2024.

ANEEL. Consulta pública nº 11/2013. Agência Nacional de Energia Elétrica, Brasil, 2013. Disponível em: https://antigo.aneel.gov.br/web/guest/consultas-publicas-antigas?p_p_id=participacaopublica_WAR_participacaopublicaportlet&p_p_lifecycle=2&p_p_state=normal&p_p_mode=view&p_p_cacheability=cacheLevelPage&p_p_col_id=column-2&p_p_col_pos=1&p_p_col_count=2&_participacaopublica_WAR_participacaopublicaportlet_ideDocumento=34456&_participacaopublica_WAR_participacaopublicaportlet_tipoFaseReuniao=fase&_participacaopublica_WAR_participacaopublicaportlet_jspPage=%2Fhtml%2Fpp%2Fvisualizar.jsp . Acesso em: 26 jun. 2023.

ANGULO-MEZA, L.; ESTELLITA LINS, M. P. Review of methods for increasing discrimination in data envelopment analysis. Annals of Operations Research, v. 116, p. 225-242, 2002. Disponível em: https://link.springer.com/article/10.1023/A:1021340616758 . Acesso: em 6 jan. 2024.

AVKIRAN, N. K.; ROWLANDS, T. How to better identify the true managerial performance: state of the art using DEA. Omega, v. 36, p. 317-324, 2008. Disponível em: https://www.sciencedirect.com/science/article/pii/S030504830600017X. Acesso em: 7 jan. 2024.

BANKER, R. D.; COOPER, W. W.; RHODES, E. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, v. 30, n. 9, p. 1078-1092, 1984. Disponível em: https://www.sciencedirect.com/science/article/pii/S030504830600017X. Acesso em: 7 jan. 2024.

BLÁZQUEZ-GÓMEZ, L.; GRIFELL-TATJÉ, E. Evaluating the regulator: winners and losers in the regulation of Spanish electricity distribution. Energy Economics, v. 33, p. 807-815, 2011. Disponível em: https://www.jstor.org/stable/2631725. Acesso em: 1 nov. 2023.

CHARNES, A.; COOPER, W. W.; RHODES, E. Measuring efficiency of decision making units. European Journal of Operational Research, v. 1, p. 429-444, 1978. Disponível em: https://www.sciencedirect.com/science/article/pii/0377221778901388. Acesso em: 15 dez. 2023.

COOK, W. D.; SEIFORD, L. M. Data envelopment analysis (DEA): thirty years on. European Journal of Operational Research, v. 192, p. 1-17, 2009. Disponível em: https://www.sciencedirect.com/science/article/pii/S0377221708001586. Acesso em: 15 dez. 2023.

COOK, W. D.; TONE, K.; ZHU, J. Data envelopment analysis: prior to choosing a model. Omega, v. 44, p. 1-4, 2014. Disponível em: https://www.sciencedirect.com/science/article/pii/S0305048313000947. Acesso em: 7 mar. 2024.

COOPER, W.; SEIFORD, L. M.; TONE, K. Introduction to data envelopment analysis and its uses: with DEA-Solver software and references. New York: Springer, 2006. Disponível em: https://www.sciencedirect.com/science/article/pii/S0305048313000947. Acesso em: 3 fev. 2024.

CORDERO, J. M.; PEDRAJA, F.; SANTÍN, D. Alternative approaches to include exogenous variables in DEA measures: a comparison using Monte Carlo. Computers & Operations Research, v. 36, p. 2699-2706, 2009. https://www.sciencedirect.com/science/article/pii/S0305054808002438. Acesso em: 3 fev. 2024.

DOYLE, J. R.; GREEN, R. H. Efficiency and cross-efficiency in DEA: derivations, meanings and uses. Journal of the Operational Research Society, v. 45, p. 567-578, 1994. Disponível em: https://www.jstor.org/stable/2584392. Acesso em: 26 jan. 2024.

DYSON, R. G. et al. Pitfalls and protocols in DEA. European Journal of Operational Research, v. 132, p. 245-259, 2001. Disponível em: https://www.sciencedirect.com/science/article/pii/S0377221700001491. Acesso em: 26 jan. 2024.

EDVARDSEN, D. F.; FØRSUND, F. R. International benchmarking of electricity distribution utilities. Resource and Energy Economics, v. 25, p. 353-371, 2003. Disponível em: https://www.sciencedirect.com/science/article/pii/S0928765503000459. Acesso em: 24 jan. 2024.

ESTELLITA LINS, M. P. et al. Integrating the regulatory and utility firm perspectives, when measuring the efficiency of electricity distribution. European Journal of Operational Research, v. 181, p. 1413-1424, 2007. Disponível em: https://www.sciencedirect.com/science/article/pii/S0377221706001895. Acesso em: 24 jan. 2024.

FRIED, H. O. et al. Accounting for environmental effects and statistical noise in data envelopment analysis. Journal of Productivity Analysis, v. 17, p. 157-174, 2002. Disponível em: https://link.springer.com/article/10.1023/A:1013548723393. Acesso em: 1 fev. 2024.

FRIED, H. O.; SCHMIDT, S. S.; YAISAWARNG, S. Incorporating the operating environment into a nonparametric measure of technical efficiency. Journal of Productivity Analysis, v. 12, p. 249-267, 1999. Disponível em: https://link.springer.com/article/10.1023/A:1007800306752. Acesso em: 1 fev. 2024.

GIANNAKIS, D.; JAMASB, T.; POLLITT, M. Benchmarking and incentive regulation of quality of service: an application to the UK electricity distribution networks. Energy Policy, v. 33, p. 2256-2271, 2005. Disponível em: https://www.sciencedirect.com/science/article/pii/S030142150400151X. Acesso em: 1 fev. 2024.

GROWITSCH, C. et al. Social cost-efficient service quality: integrating customer valuation in incentive regulation. Energy Policy, v. 38, p. 2536-2544, 2010. Disponível em: https://www.sciencedirect.com/science/article/pii/S0301421510000042. Acesso em: 25 jan. 2024.

HANEY, A. B.; POLLITT, M. G. Efficiency analysis of energy networks: an international survey of regulators. Energy Policy, v. 37, n. 12, p. 5814-5830, 2009. Disponível em: https://www.sciencedirect.com/science/article/pii/S0301421509006351. Acesso em: 25 jan. 2024.

HSU, F. M.; HSUEH, C. C. Measuring relative efficiency of government-sponsored R&D projects: a three-stage approach. Evaluation and Program Planning, v. 32, p. 178-186, 2008. Disponível em: https://pubmed.ncbi.nlm.nih.gov/19056123/. Acesso em: 15 nov. 2023.

JAMASB, T.; NILLESEN, P.; POLLITT, M. Strategic behaviour under regulatory benchmarking. Energy Economics, v. 26, p. 825-843, 2004. Disponível em: https://www.sciencedirect.com/science/article/pii/S0140988304000404. Acesso em: 12 dez. 2023.

JAMASB, T.; POLLITT, M. Benchmarking and regulation: international electricity experience. Utilities Policy, v. 9, p. 107-130, 2001. Disponível em: https://www.sciencedirect.com/science/article/pii/S0957178701000108. Acesso em: 2 mai. 2023.

KUOSMANEN, T.; SAASTAMOINEN, A.; SIPILAINEN, T. What is the best practice for benchmark regulation of electricity distribution? Comparison of DEA, SFA and StoNED methods. Energy Policy, v. 61, p. 740-750, 2013. Disponível em: https://www.sciencedirect.com/science/article/pii/S0301421513004461. Acesso em: 2 mai. 2023.

LIU, J. S. et al. Data envelopment analysis 1978–2010: a citation-based literature survey. Omega, v. 41, p. 3-15, 2013. Disponível em: https://www.sciencedirect.com/science/article/pii/S0305048312000291. Acesso em: 2 mai. 2023.

MEEUSEN, W.; VAN DEN BROECK, J. Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review, v. 8, p. 435-444, 1977. Disponível em: https://www.jstor.org/stable/2525757. Acesso em: 1 nov. 2023.

MULLARKEY, S. et al. A framework for establishing the technical efficiency of Electricity Distribution Counties (EDCs) using data envelopment analysis. Energy Conversion and Management, v. 94, p. 112-123, 2015. Disponível em: https://www.sciencedirect.com/science/article/pii/S0196890415000618. Acesso em: 27 abr. 2024.

MUÑIZ, M. A. Separating managerial inefficiency and external conditions in data envelopment analysis. European Journal of Operational Research, v. 143, p. 625-643, 2002. Disponível em: https://www.sciencedirect.com/science/article/pii/S0377221701003447. Acesso em: 27 abr. 2024.

OMRANI, H.; BEIRAGH, R. G.; KALEIBARI, S. S. Performance assessment of Iranian electricity distribution companies by an integrated cooperative game data envelopment analysis principal component analysis approach. Electrical Power and Energy Systems, v. 64, p. 617-625, 2015. Disponível em: https://www.sciencedirect.com/science/article/pii/S0142061514004803. Acesso em: 4 jul. 2023.

PÉREZ-REYES, R.; TOVAR, B. Measuring efficiency and productivity change in the Peruvian electricity distribution companies after reforms. Energy Policy, v. 37, n. 6, p. 2249-2261, 2009. Disponível em: https://www.sciencedirect.com/science/article/pii/S0301421509000731. Acesso em: 4 jul. 2023.

PESSANHA, J. F. M.; SOUZA, R. C.; LAURENCE, L. C. Um modelo de análise envoltória de dados para estabelecimento de metas de continuidade do fornecimento de energia elétrica. Pesquisa Operacional, v. 27, n. 1, p. 51-83, 2007. Disponível em: https://www.scielo.br/j/pope/a/76GzxxmqdjfLh9bQfWNccNK/. Acesso em: 30 jun. 2024.

RAMOS-REAL, F. J. et al. The evolution and main determinants of productivity in Brazilian electricity distribution 1998–2005: an empirical analysis. Energy Economics, v. 31, p. 298-305, 2009. Disponível em: https://www.sciencedirect.com/science/article/pii/S0140988308001679. Acesso em: 30 jun. 2024.

RESENDE, M. Relative efficiency measurement and prospects for yardstick competition in Brazilian electricity distribution. Energy Policy, v. 30, p. 637-647, 2002. Disponível em: https://www.sciencedirect.com/science/article/pii/S030142150100132X. Acesso em: 2 set. 2023.

SALEEM, M. Benchmarking and regulation for the electricity distribution sector in Pakistan: lessons for developing countries. South Asia Economic Journal, v. 8, p. 117-138, 2007. Disponível em: https://journals.sagepub.com/doi/abs/10.1177/139156140600800107. Acesso em: 12 ago. 2023.

SANTOS, S. P.; AMADO, C. A. F.; ROSADO, J. R. Formative evaluation of electricity distribution utilities using data envelopment analysis. Journal of the Operational Research Society, v. 62, p. 1298-1319, 2011. Disponível em: https://www.tandfonline.com/doi/full/10.1057/jors.2010.66. Acesso em: 11 jan. 2024.

SEIFORD, L. M.; ZHU, J. Modelling undesirable factors in efficiency evaluation. European Journal of Operational Research, v. 142, p. 16-20, 2002. Disponível em: https://www.sciencedirect.com/science/article/pii/S0377221701002934. Acesso em: 27 ago. 2023.

SIMAB, M.; HAGHIFAM, M. R. Quality performance based regulation through designing reward and penalty scheme for electric distribution companies. Electrical Power and Energy Systems, v. 43, p. 539-545, 2012. Disponível em: https://www.sciencedirect.com/science/article/pii/S014206151200333X. Acesso em: 9 jun. 2024.

PEREIRA DE SOUZA, M. V. P. et al. The cost efficiency of the Brazilian electricity distribution utilities: a comparison of Bayesian SFA and DEA models. Mathematical Problems in Engineering, 2010, artigo 2010a.

SOUZA, M. V. P.; SOUZA, R. C.; PESSANHA, J. F. M. Custos operacionais eficientes das distribuidoras de energia elétrica: um estudo comparativo dos modelos DEA e SFA. Gestão & Produção, v. 17, n. 4, p. 653-667, 2010b. Disponível em: https://onlinelibrary.wiley.com/doi/10.1155/2010/593059. Acesso em: 8 abr. 2023.

TSCHAFFON, P. B.; MEZA, L. A. Assessing the efficiency of the electric energy distribution using data envelopment analysis with undesirable outputs. IEEE LATIN AMERICA TRANSACTIONS, Anais [...], v. 12, n. 6, p. 1027-1035, 2014. Disponível em: https://ieeexplore.ieee.org/document/6893996/. Acesso em: 21 mar. 2024.

WAGNER, J. M.; SHIMSHAK, D. G. Stepwise selection of variables in data envelopment analysis: procedures and managerial perspectives. European Journal of Operational Research, v. 180, p. 57-67, 2007. Disponível em: https://www.sciencedirect.com/science/article/pii/S0377221706002839. Acesso em: 8 fev. 2023.

YADAV, V. K. et al. A novel power sector restructuring model based on data envelopment analysis. Electrical Power and Energy Systems, v. 44, p. 629-637, 2013. Disponível em: https://www.sciencedirect.com/science/article/pii/S0142061512004498. Acesso em: 10 mar. 2024.

YADAV, V. K.; PADHY, N. P.; GUPTA, H. O. A micro level study of an Indian electric utility for efficiency enhancement. Energy, v. 35, p. 4053-4063, 2010. Disponível em: https://www.sciencedirect.com/science/article/pii/S0360544210003257. Acesso em: 12 mar. 2022.

Publicado

03-06-2025

Como Citar

Oliveira, L. F. A. (2025). Método híbrido para avaliação dos custos operacionais de distribuidoras brasileiras de energia. Revista Produção Online, 25(2), 5221 . https://doi.org/10.14488/1676-1901.v25i2.5221

Edição

Seção

Artigos