Simulação computacional da movimentação de materiais com veículos automaticamente guiados no contexto da Indústria 4.0

um estudo de caso de uma indústria eletrônica

Autores

  • Rodrigo Begnini de Castilhos Universidade de Caxias do Sul (UCs), Caxias do Sul, Porto Alegre, Brasil.
  • Ivandro Cecconello Universidade de Caxias do Sul (UCs), Caxias do Sul, Porto Alegre, Brasil. https://orcid.org/0000-0003-2697-8528

DOI:

https://doi.org/10.14488/1676-1901.v25i2.4611

Palavras-chave:

Simulação Computacional, Eficiência, Intralogística, AGV, Indústria 4.0

Resumo

O adequado dimensionamento dos recursos logísticos necessários, para garantir adequado abastecimento de linhas produtivas e movimentação de produtos acabados, representa um desafio para a maioria dos contextos industriais, e no segmento eletroeletrônico não é diferente. Neste contexto, este trabalho aborda o problema de dimensionamento de AGVs frente a demanda necessária de abastecimento de matérias prima e de retirada de produtos acabado, em uma indústria eletrônica. Assim, o objetivo deste trabalho foi desenvolver uma simulação computacional que possui dois AGVs na operação intralogística, comparando as principais métricas com dados reais e também com cálculos analíticos. O estudo foi desenvolvido durante o projeto de implementação do segundo veículo autônomo da planta, demonstrando as vantagens e limitações da ferramenta de simulação frente a métodos convencionais. Os resultados encontrados pelo método analítico mostraram-se mais otimistas quanto a eficiência do sistema, entretanto a simulação computacional entregou métricas mais coerentes com o cenário real de utilização dos veículos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Rodrigo Begnini de Castilhos, Universidade de Caxias do Sul (UCs), Caxias do Sul, Porto Alegre, Brasil.

Engenheiro eletricista formado pela Universidade de Caxias do Sul (UCS) em 2019. É pós-graduado em Engenharia Industrial pela UCS (2022) e em Gestão Empresarial pela Focus (2023). Iniciou sua trajetória profissional como engenheiro de hardware na Spark AG, em Nova Prata, atuando no desenvolvimento de sistemas embarcados. Atualmente, coordena projetos de engenharia voltados à automação de processos em ambientes industriais e logísticos, com foco em movimentação de materiais utilizando veículos autônomos e soluções automatizadas para inventário. Possui experiência em projetos aplicados a armazéns de grande porte, com ênfase em tecnologias integradas à Indústria 4.0.

Ivandro Cecconello, Universidade de Caxias do Sul (UCs), Caxias do Sul, Porto Alegre, Brasil.

Possui graduação em Engenharia Mecânica pela UCS (1998) e mestrado em Engenharia de Produção pela UFSC (2002). Doutor em Administração pela UCS (2019) na linha de pesquisa em estratégia e operações. Atualmente é professor de Graduação e Pós-Graduação da Universidade de Caxias do Sul. Coordenador de cursos de pós-graduação em Engenharia Industrial e Engenharia 4.0. Larga vivência na área de Engenharia de Produção e Mecânica, com ênfase em Planejamento, Projeto e Controle de Sistemas de Produção de componentes automotivos. Tem especial interesse e pesquisa sobre: lean manufacturing; gestão de projetos; indústria 4.0; sistemas de produção; moldes de injeção; digitalização; simulação; e produtos inteligentes.

Referências

BECHTSIS, Dimitrios; TSOLAKIS, Naoum; VLACHOS, Dimitrios; IAKOVOU, Eleftherios. Sustainable supply chain management in the digitalisation era: The impact of Automated Guided Vehicles. Journal of Cleaner Production, v. 142, p. 3970-3984, 2017. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0959652616316675. Acesso em: 10 maio. 2025.

BILGE, Ümit; TANCHOCO, Jose MA. AGV systems with multi-load carriers: basic issues and potential benefits. Journal of Manufacturing Systems, v. 16, n. 3, p. 159-174, 1997. Disponível em: https://www.semanticscholar.org/paper/AGV-systems-with-multi-load-carriers%3A-Basic-issues-Bilge-Tanchoco/f4cb0a17728a9756bb3c85daf4126ec3f41fd070. Acesso em: 10 maio. 2025.

FAZLOLLAHTABAR, Hamed. Parallel autonomous guided vehicle assembly line for a semi-continuous manufacturing system. Assembly Automation, 2016. Disponível em: https://www.proquest.com/docview/2082270398. Acesso em: 10 maio. 2025.

FOTTNER, Johannes; CLAUER, Dana; HORMES, Fabian; FREITAG, Michael; BEINKE, Thies; OVERMEYER, Ludger; GOTTWALD, Simon; ELBERT, Ralf; SARNOW, Tessa; SCHMIDT, Torstem; REITH, Karl; ZADEK, Hartmut; THOMAS, Franziska. Autonomous Systems in Intralogistics-State of the Art and Future Research Challenges. Logistics Research, v. 14, n. 1, p. 2, 2021. Disponível em: https://www.econstor.eu/handle/10419/297188. Acesso em: 10 maio. 2025.

FOIT, Krzysztof; GOŁDA, Grzegorz; KAMPA, Adrian. Integration and evaluation of intra-logistics processes in flexible production systems based on oee metrics, with the use of computer modelling and simulation of agvs. Processes, v. 8, n. 12, p. 1648, 2020. Disponível em: https://www.mdpi.com/2227-9717/8/12/1648. Acesso em: 11 maio. 2025.

KESEN, Saadettin Erhan; BAYKOÇ, Ömer Faruk. Simulation of automated guided vehicle (AGV) systems based on just-in-time (JIT) philosophy in a job-shop environment. Simulation Modelling Practice and Theory, v. 15, n. 3, p. 272-284, 2007. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1569190X06000852. Acesso em: 12 maio. 2025.

LUŚCIŃSKI, Sławomir; IVANOV, Vitalii. A Simulation Study of Industry 4.0 Factories Based on the Ontology on Flexibility with using Flexsim Software. Management and Production Engineering Review, Polonia, v. 11, n. 3, p. 74-83, 2020. Disponível em: https://www.journals.pan.pl/dlibra/publication/134934/edition/117941. Acesso em: 12 maio. 2025.

MAHADEVAN, B. and; NARENDRAN, T. T. A hybrid modelling approach to the design of an AGV-based material handling system for an FMS. The international journal of production research, v. 32, n. 9, p. 2015-2030, 1994. Disponível em: https://repository.iimb.ac.in/handle/2074/10385. Acesso em: 12 maio. 2025.

MATOS, Diogo; COSTA, Pedro; LIMA, José; COSTA, Paulo. Multi AGV coordination tolerant to communication failures. Robotics, v. 10, n. 2, p. 55, 2021. Disponível em: https://www.mdpi.com/2218-6581/10/2/55. Acesso em: 12 maio. 2025.

LÓPEZ, Joaquín; ZALAMA, Eduardo; GÓMEZ-GARCÍA-BERMEJO, Jaime. A simulation and control framework for AGV based transport systems. Simulation Modelling Practice and Theory, v. 116, p. 102430, 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S1569190X21001271. Acesso em: 12 maio. 2025.

OYEKANLU, Emmanuel A.; SMITH, Alexander C.; THOMAS, Windsor P.; MULROY, Grethel; HITESH, Dave; RAMSEY, Matthew; KUHN, David J.; MCGHINNIS, Jason D.; BUONAVITA Steven C.; LOOPER, Nickolous A.; NG, Mason; NGOMA, Anthony; LIU, Weimin; MCBRIDE Patrick G.; SHULTZ, Michael G.; CERASI, Craig; SUN, Dan. A review of recent advances in automated guided vehicle technologies: Integration challenges and research areas for 5G-based smart manufacturing applications. IEEE access, v. 8, p. 202312-202353, 2020. Disponível em: https://www.academia.edu/73335048/A_Review_of_Recent_Advances_in_Automated_Guided_Vehicle_Technologies_Integration_Challenges_and_Research_Areas_for_5G_Based_Smart_Manufacturing_Applications. Acesso em: 13 maio. 2025.

PETRINEC, Krešimir; KOVACIC, Zdenko; MAROZIN, Alessandro. Simulator of multi-AGV robotic industrial environments. 2003 IEEE International Conference on Industrial Technology, p. 979-983, 2003. Disponível em: https://www.researchgate.net/publication/4071056_Simulator_of_multi-AGV_robotic_industrial_environments. Acesso em: 13 maio. 2025.

PAWLEWSKI, Pawel; HOFFA, Patrycja. Optimization of cross-docking terminal using flexsim/optquest-case study. Proceedings of the Winter Simulation Conference 2014, p. 2013-2024, 2014. Disponível em: https://www.informs-sim.org/wsc14papers/includes/files/177.pdf. Acesso em: 13 maio. 2025.

SABATTINI, Lorenzo; SECCHI, Cristian; COTENA, Giuseppina; RONZONI, Davide; FOPPOLI, Matteo; OLEARI, Fabio. Technological roadmap to boost the introduction of AGVs in industrial applications. IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP), p. 203-208, 2013. Disponível em: https://www.researchgate.net/publication/261210001_Technological_roadmap_to_boost_the_introduction_of_AGVs_in_industrial_applications. Acesso em: 13 maio. 2025.

SCHULZE, Lothar; WULLNER, Alexander. The approach of automated guided vehicle systems. 2006 IEEE international conference on service operations and logistics, and informatics, p. 522-527, 2006. Disponível em: https://ieeexplore.ieee.org/document/4125635. Acesso em: 13 maio. 2025.

SEZEN, Bülent. Modeling automated guided vehicle systems in material handling. Doğuş Üniversitesi Dergisi, v. 4, n. 2, p. 207-216, 2003. Disponível em: https://www.researchgate.net/publication/281090567_Modeling_Automated_Guided_Vehicle_Systems_in_Material_Handling. Acesso em: 13 maio. 2025.

SINRIECH, D.; TANCHOCO, J. M. A. An economic model for determining AGV fleet size. International Journal of Production Research, v. 30, n. 6, p. 1255-1268, 1992. Disponível em: https://scispace.com/papers/an-economic-model-for-determining-agv-fleet-size-djb02lbh2e. Acesso em: 13 maio. 2025.

YAFEI, Liu; QINGMING, Wang; PENG, Ge. Research on simulation and optimization of warehouse logistics based on flexsim-take C company as an example. In: INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY AND MANAGEMENT (ICITM), 7., p. 288-293, 2008. Disponível em: https://ieeexplore.ieee.org/document/8333963. Acesso em: 13 maio. 2025.

YIN, R. K. Estudo de caso: planejamento e métodos. 5 ed. Porto Alegre: Bookman, 2015. Disponivel em: https://books.google.com.br/books/about/Estudo_de_Caso_5_Ed.html?hl=pt-BR&id=EtOyBQAAQBAJ&redir_esc=y. Acesso em: 13 maio. 2025.

Publicado

07-06-2025

Como Citar

Castilhos, R. B. de, & Cecconello, I. (2025). Simulação computacional da movimentação de materiais com veículos automaticamente guiados no contexto da Indústria 4.0: um estudo de caso de uma indústria eletrônica. Revista Produção Online, 25(2), 4611 . https://doi.org/10.14488/1676-1901.v25i2.4611

Edição

Seção

Artigos