Challenges in implementing Industry 4.0 in the brazilian metal-mechanics industry
analysis of entry barriers
DOI:
https://doi.org/10.14488/1676-1901.v25i2.5436Keywords:
Industry 4.0, Barriers, Metal-mechanics, Manufacturing, ChallengesAbstract
Implementing industry 4.0 in the Brazilian metal-mechanics industry involves technological, organizational, cultural, and regulatory issues. The lack of adequate technological infrastructure, resistance to change by employees, the shortage of qualified professionals, and regulatory challenges are just some of the obstacles that companies face. In addition, the technological underexploitation of the metal-mechanics industry hinders the entry of 4.0 ideals and, under certain conditions, impedes competitive innovation. Given this scenario, this article seeks to provide interested parties, through a systematic literature review on the metal-mechanics industry in Brazil, with a broad analysis of the breaking of the status quo for the application of emerging technologies to understand the complexity of the mechanical properties and behavior of materials, the cost of implementing flexible technologies, technological barriers and the complexity in data collection and integration. In addition, it also presents a questionnaire prepared from a data collection instrument on the existence or not of industry 4.0 within Brazilian industries and their perspectives on the subject.
Downloads
References
ABIO, Albert et al. Machine Learning-Based Surrogate Model for Press Hardening Process of 22MnB5 Sheet Steel Simulation in Industry 4.0. Materials, [S. l.], v. 15, n. 10, p. 3603, 2022. Disponível em: https://www.mdpi.com/1996-1944/15/10/3603. Acesso em: 22 maio 2024.
BEAUCHEMIN, Maude et al. Dynamic allocation of human resources: case study in the metal 4.0 manufacturing industry. International Journal of Production Research, [s. l.], v. 61, n. 20, p. 6891–6907, 2023. Disponível em: https://doi.org/10.1080/00207543.2022.2139002. Acesso em: 22 maio 2024.
BONNARD, Renan et al. Big data/analytics platform for Industry 4.0 implementation in advanced manufacturing context. [s. l.], Disponível em: https://doi.org/10.1007/s00170-021-07834-5. Acesso em: 22 maio 2024.
CHEN, Shikang et al. Blockchain applications in PLM towards smart manufacturing. [s. l.], Disponível em: https://doi.org/10.1007/s00170-021-07802-z. Acesso em: 22 maio 2024.
DIAZ, David Enrique Apaza et al. Optimization Model to Increase the Productive Flow, Applying SLP, 5s and Kanban-Conwip Hybrid System in Companies of the Metalworking Sector. In: INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM), 8., 2022, Cambridge. Proceedings [...]. Cambridge: IEEE, 2022. p. 186–190. Disponível em: https://ieeexplore.ieee.org/document/9904944. Acesso em: 22 maio 2024.
DURÃO, Luiz Fernando C. S. et al. Digital twin requirements in the context of industry 4.0. In: AMARAL, A.; D'ORAZIO, A.; GOMES, J. (ed.). Product Lifecycle Management in the Era of Internet of Things. Cham: Springer, 2018. p. 204–214. (IFIP Advances in Information and Communication Technology, v. 540). Disponível em: https://link.springer.com/chapter/10.1007/978-3-319-99707-0_20. Acesso em: 22 maio 2024.
FEDDOUL, Yassine et al. Exploring human-machine collaboration in industry: a systematic literature review of digital twin and robotics interfaced with extended reality technologies. The International Journal of Advanced Manufacturing Technology, [S. l.], v. 128, n. 1-2, p. 15-46, 2023. Disponível em: https://link.springer.com/article/10.1007/s00170-023-11883-7. Acesso em: 22 maio 2024.
GHARIBVAND, Vahid et al. Cloud based manufacturing: A review of recent developments in architectures, technologies, infrastructures, platforms and associated challenges. The International Journal of Advanced Manufacturing Technology, [S. l.], v. 130, n. 9-10, p. 4119-4158, 2024. Disponível em: https://link.springer.com/article/10.1007/s00170-023-12795-6. Acesso em: 22 maio 2024.
GHAURI, Pervez N.; ELG, Ulf; MELÉN HÅNELL, Sara. Achieving a Sustainable Competitive Advantage: A Holistic Approach. Cheltenham: Edward Elgar Publishing, 2021. Disponível em: https://www.elgaronline.com/view/book/9781800378069/9781800378069.xml. Acesso em: 22 maio 2024.
GLEESON, Brendan; DAVIDSON, Kathryn. The urban revolution that isn’t: The political ecology of the new “urbanology”. The Journal of Australian Political Economy, Wentworth Building, University of Sydney, New South Wales, Australia, n. 72, p. 52–79, 2013. Disponível em: https://search.informit.org/doi/10.3316/informit.846330743067917
GROBLER-DĘBSKA, Katarzyna; KUCHARSKA, Edyta; BARANOWSKI, Jerzy. Formal scheduling method for zero-defect manufacturing. International Journal of Advanced Manufacturing Technology, [S. l.], v. 118, n. 11–12, p. 4139–4159, 2022. Disponível em: https://link.springer.com/article/10.1007/s00170-021-08149-z. Acesso em: 22 maio 2024.
GROCHE, Peter; STORBECK, Martin; WANG, Tianbo. Continuous forming of height-variable profiles by flexible roller beading. International Journal of Advanced Manufacturing Technology, [S. l.], v. 103, n. 5–8, p. 2649–2663, 2019. Disponível em: https://link.springer.com/article/10.1007/s00170-019-03716-1. Acesso em: 22 maio 2024.
HUAMÁN, Jonathan et al. Production Management Model Based on Lean Manufacturing Focused on the Human Factor to Improve Productivity of Small Businesses in the Metalworking Sector. In: AHRAM, T. et al. (org.). Human Systems Engineering and Design II. Cham: Springer International Publishing, 2020. p. 847–853. Disponível em: https://link.springer.com/chapter/10.1007/978-3-030-27928-8_125. Acesso em: 22 maio 2024.
HUMPHREY, John. THE ADOPTION OF JAPANESE MANAGEMENT TECHNIQUES IN BRAZILIAN INDUSTRY. Journal of Management Studies, [s. l.], v. 32, n. 6, p. 767–787, 1995. Disponível em: https://doi.org/10.1111/j.1467-6486.1995.tb00151.x. Acesso em: 22 maio 2024.
LI, Yuanyuan et al. Machine learning and optimization for production rescheduling in Industry 4.0. International Journal of Advanced Manufacturing Technology, [S. l.], v. 110, n. 9–10, p. 2445–2463, 2020. Disponível em: https://link.springer.com/article/10.1007/s00170-020-05973-5. Acesso em: 22 maio 2024.
MALUF, Arthur S.; SAGAWA, Juliana K.; BORGES, Roberto F. S. Toward the use of bond graphs for manufacturing control: comparison of existing models. The International Journal of Advanced Manufacturing Technology, [S. l.], v. 121, n. 9-10, p. 6783-6804, 2022. Disponível em: https://link.springer.com/article/10.1007/s00170-022-09673-x. Acesso em: 22 maio 2024.
MARIO, Coccia. Sources of disruptive technologies for industrial change. [s. l.], p. 97–120, 2017. Disponível em: https://www.rivisteweb.it/doi/10.1430/87140. Acesso em: 22 maio 2024.
MATENGA, Alice Elizabeth; MPOFU, Khumbulani. Blockchain-Based Cloud Manufacturing SCM System for Collaborative Enterprise Manufacturing: A Case Study of Transport Manufacturing. Applied Sciences (Switzerland), [S. l.], v. 12, n. 17, p. 8769, 2022. Disponível em: https://www.mdpi.com/2076-3417/12/17/8769. Acesso em: 22 maio 2024.
MEDEIROS, Eveliny D.; SANTOS, Luciano C.; GOHR, Cláudia F. Modelos de maturidade para a indústria 4.0: uma revisão sistemática da literatura. Revista Gestão & Tecnologia, [S. l.], v. 24, n. 5, p. 154–181, 2024. Disponível em: https://revistagt.fpl.edu.br/get/article/view/2764. Acesso em: 22 maio 2024.
MEJÍA, Gonzalo et al. Job shop rescheduling with rework and reconditioning in Industry 4.0: an event-driven approach. International Journal of Advanced Manufacturing Technology, [S. l.], v. 119, n. 5–6, p. 3729–3745, 2022. Disponível em: https://link.springer.com/article/10.1007/s00170-021-08428-9. Acesso em: 22 maio 2024.
MORENO, Aitor et al. Virtualisation process of a sheet metal punching machine within the Industry 4.0 vision. International Journal on Interactive Design and Manufacturing, [S. l.], v. 11, n. 2, p. 365–373, 2017. Disponível em: https://link.springer.com/article/10.1007/s12008-016-0318-7. Acesso em: 22 maio 2024.
PAPAVASILEIOU, A. et al. An optical system for identifying and classifying defects of metal parts. International Journal of Computer Integrated Manufacturing, [S. l.], v. 35, n. 3, p. 326–340, 2022. Disponível em: https://www.tandfonline.com/doi/full/10.1080/0951192X.2021.2017830. Acesso em: 22 maio 2024.
RALPH, Benjamin James et al. Transformation of a rolling mill aggregate to a cyber physical production system: from sensor retrofitting to machine learning. Journal of Intelligent Manufacturing, [S. l.], v. 33, n. 2, p. 493–518, 2022. Disponível em: https://link.springer.com/article/10.1007/s10845-020-01662-7. Acesso em: 22 maio 2024.
SANTOS, Reginaldo Carreiro; MARTINHO, José Luís. An Industry 4.0 maturity model proposal. Journal of Manufacturing Technology Management, [S. l.], v. 31, n. 5, p. 1023–1043, 2020. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/JMTM-09-2018-0315/full/html. Acesso em: 22 maio 2024.
SELICATI, Valeria et al. A monitoring framework based on exergetic analysis for sustainability assessment of direct laser metal deposition process. International Journal of Advanced Manufacturing Technology, [S. l.], v. 118, n. 11–12, p. 3641–3656, 2022. Disponível em: https://link.springer.com/article/10.1007/s00170-021-08110-0. Acesso em: 22 maio 2024.
SHAHIN, Mohammad et al. Integration of Lean practices and Industry 4.0 technologies: smart manufacturing for next-generation enterprises. International Journal of Advanced Manufacturing Technology, [S. l.], v. 107, n. 5–6, p. 2927–2936, 2020. Disponível em: https://link.springer.com/article/10.1007/s00170-020-05051-8. Acesso em: 22 maio 2024.
SIMEONE, Alessandro; DENG, Bin; CAGGIANO, Alessandra. Resource efficiency enhancement in sheet metal cutting industrial networks through cloud manufacturing. International Journal of Advanced Manufacturing Technology, [S. l.], v. 107, n. 3–4, p. 1345–1365, 2020. Disponível em: https://link.springer.com/article/10.1007/s00170-020-05085-y. Acesso em: 22 maio 2024.
TATIPALA, Sravan et al. A hybrid data-based and model-based approach to process monitoring and control in sheet metal forming. Processes, [S. l.], v. 8, n. 1, p. 81, 2020. Disponível em: https://www.mdpi.com/2227-9717/8/1/81. Acesso em: 22 maio 2024.
TESSARINI JUNIOR, Geraldo; SALTORATO, Patrícia. Impactos da Indústria 4.0 na organização do trabalho: uma revisão sistemática da literatura. Revista Produção Online, Florianópolis, v. 18, n. 2, p. 743-768, 2018. Disponível em: https://producaoonline.org.br/rpo/article/view/2838. Acesso em: 22 maio 2024.
TORTORELLA, Guilherme Luz; FETTERMANN, Diego. Implementation of Industry 4.0 and lean production in Brazilian manufacturing companies. International Journal of Production Research, [s. l.], v. 56, n. 8, p. 2975–2987, 2018. Disponível em: https://doi.org/10.1080/00207543.2017.1391420. Acesso em: 22 maio 2024.
TSAI, Sung Yu; CHANG, Jen Yuan. Regression approach to a novel lateral flatness leveling system for smart manufacturing. Applied Sciences (Switzerland), [S. l.], v. 11, n. 14, p. 6363, 2021. Disponível em: https://www.mdpi.com/2076-3417/11/14/6363. Acesso em: 22 maio 2024.
YANG, D. Y. et al. Flexibility in metal forming. CIRP Annals, [S. l.], v. 67, n. 2, p. 743–765, 2018. Disponível em: https://www.sciencedirect.com/science/article/pii/S000785061830154X. Acesso em: 22 maio 2024.
ZAMBRANO, Valentina et al. Industrial digitalization in the industry 4.0 era: Classification, reuse and authoring of digital models on Digital Twin platforms. Array, [S. l.], v. 14, p. 100175, 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S259000762200055X. Acesso em: 22 maio 2024.
ZUTIN, Gabriel Consoni et al. Readiness levels of Industry 4.0 technologies applied to aircraft manufacturing—a review, challenges and trends. International Journal of Advanced Manufacturing Technology, [S. l.], v. 120, n. 1–2, p. 927–943, 2022. Disponível em: https://link.springer.com/article/10.1007/s00170-022-08977-0. Acesso em: 22 maio 2024.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Produção Online

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal reserves the right to make spelling and grammatical changes, aiming to keep a default language, respecting, however, the style of the authors.
The published work is responsibility of the (s) author (s), while the Revista Produção Online is only responsible for the evaluation of the paper. The Revista Produção Online is not responsible for any violations of Law No. 9.610 / 1998, the Copyright Act.
The journal allows the authors to keep the copyright of accepted articles, without restrictions
This work is licensed under a Creative Commons License .